Carnegie Mellon University
 HemzCollege

95-865 Unstructured Data Analytics

Week 5: Intro to predictive data analytics, neural nets, and deep learning

George Chen

Quiz 1

Fall 2019 95-865 Quiz 1 Histogram

Mean: 33.3, std dev: 23.6, max achieved: 87

Quiz 1 Regrade Requests

- How regrades work:

1. Study solutions (already posted in Canvas under "Files") very carefully
2. If you think there's a mistake, send me an email and be very specific about what was incorrectly graded and how many points are at stake
3. We will regrade your whole quiz 1 (the version that you submitted to Canvas on the quiz day)
4. Your score can go up, go down, or stay the same, and the regraded result is final

- Due this Friday 11:59pm Pittsburgh time

Disclaimer: unfortunately " k " means many things

What if we have labels?

Example: MNIST handwritten digits have known labels

If the labels are known...

If the labels are known...
And we assume data generated by GMM...
What are the model parameters?

Flashback: Learning a GMM

Don't need this top part if we know the labels!
Step O. Rick k
Step 1: Pick guesses for cluster probabilities,means, and covariances (often done Uising k-means)

Repeat until convergence:
Step 2: Compute probability of each point belonging teeach of the k colusters

Step 3: Update cluster probabilities, means, and covariances carefully accounting for probabilities of each point belonging to each of the clusters

If the labels are known...
And we assume data generated by GMM...
What are the model parameters?

$k=\#$ of colors
We can directly estimate cluster means, covariances

We just created a classifier
(a procedure that given a new data point tells us what "class" it belongs to)

What should the label of this new point be?

This classifier we've created assumes a generative model

Whichever cluster has higher probability!

You've seen a prediction model that is partly a generative model

Linear regression!

Predictive Data Analysis

Training data

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

Goal: Given new feature vector x, predict label y

- y is discrete (such as colors red and blue)
\rightarrow prediction method is called a classifier
- y is continuous (such as a real number)
\rightarrow prediction method is called a regressor
A giant zoo of methods
- Generative models (like what we just described)
- Discriminative methods (just care about learning prediction rule without assuming generative model)

Example of a Discriminative Method: k-NN Classification

Example: k-NN Classification

Example: k-NN Classification

Example: k-NN Classification

Example: k-NN Classification

We just saw: $k=1, k=2, k=3$
What happens if $k=n$?

How do we choose k ?

What l'll describe next can be used to select hyperparameter(s) for any prediction method

First: How do we assess how good a prediction method is?

Hyperparameters vs. Parameters

- We fit a model's parameters to training data (terminology: we "learn" the parameters)
- We pick values of hyperparameters and they do not get fit to training data
- Example: Gaussian mixture model
- Hyperparameter: number of clusters k
- Parameters: cluster probabilities, means, covariances
- Example: k-NN classification
- Hyperparameter: number of nearest neighbors k
- Parameters: N/A

Training data

Want to classify these points correctly

Example: future emails to classify as spam/ham

Predicted labels

| Training
 data
 point |
| :---: | :---: | :---: | :---: | :---: |
| Training
 data
 point |

Train method on data in gray
Predict on data in orange

Compute prediction error

Simple data splitting
(commonly called train/test split)
In this example: we did a 80\%-20\% split

Training	Training	Training	Training	Training data data point
point	point	data		
point	data			
point				

Train method on data in gray

Predict on data in orange

Compute prediction error

Training	Training	Training	Training	Training
data				
point				

Train method on data in gray

Predict on data in orange

Compute prediction error

$$
50 \% \quad 0 \% \quad 50 \%
$$

| Training
 data
 point |
| :---: | :---: | :---: | :---: | :---: |
| Training
 data
 point |

Train method on data in gray

Predict on data in orange

Compute prediction error

Training data point

Training data point

Training Training data point data

Training data point

Training data point

Training data point

Training data point

Training data point

Training data point

Train method on data in gray

Predict on data in orange

Compute prediction error

$$
\begin{array}{cccc}
0 \% & 0 \% & 50 \% & 0 \% \\
& \text { Average error: } & (0+0+50+0+50) / 5=20 \% &
\end{array}
$$

$\left.$| Training |
| :---: | :---: | :---: | :---: | :---: |
| data |
| point |\quad| Training |
| :---: |
| data |
| point |\quad| Training |
| :---: |
| data |
| point |\quad| Training |
| :---: |
| data |
| point |\quad| Training |
| :---: |
| data |
| point | \right\rvert\,

1. Shuffle data and put them into "folds" (5 folds in this example)
2. For each fold (which consists of its own train/validation sets): (a) Train on fold's training data, test on fold's validation data
(b) Compute prediction error
3. Compute average prediction error across the folds
not the same k as in k-means or k-NN classification

k-fold Cross Validation

| Training
 data
 point |
| :---: | :---: | :---: | :---: | :---: |
| Training
 data
 point |

1. Shuffle data and put them into "folds" ($k=5$ folds in this example)
2. For each fold (which consists of its own train/validation sets): (a) Train on fold's training data, test on fold's validation data
(b) Compute prediction error
3. Compute average prediction error across the folds
not the same k as in k-means or k-NN classification

k-fold Cross Validation

$\left.$| Training |
| :---: | :---: | :---: | :---: | :---: |
| data |
| point |\quad| Training |
| :---: |
| data |
| point | | Training |
| :---: |
| data |
| point |\quad| Training |
| :---: |
| data |
| point |\quad| Training |
| :---: |
| data |
| point | \right\rvert\,

1. Shuffle data and put them into "folds" ($k=5$ folds in this example)
2. For each fold (which consists of its own train/validation sets):
(a) Train on fold's training data, test on fold's validation data
(b) Compute some sort of prediction score
3. Compute average prediction score across the folds "cross validation score"

Choosing k in k-NN Classification

Note: k-NN classifier has a single hyperparameter k
For each $k=1,2,3, \ldots$, the maximum k you are willing to try:
Compute 5-fold cross validation score using k-NN classifier as prediction method

Use whichever k has the best cross validation score

Automatic Hyperparameter Selection

Suppose the prediction algorithm you're using has hyperparameters θ

For each hyperparameter setting θ you are willing to try:
Compute (5)-fold cross validation score using your algorithm with hyperparameters θ
Use whichever θ has the best cross validation score
Why 5?
People have found using 10 folds or 5 folds to work well in practice but it's just empirical - there's no deep reason

Important: the errors from simple data splitting and cross-validation are estimates of the true error on test data!

Example: earlier, we got a cross validation score of 20% error

This is a guess for the error we will get on test data

This guess is not always accurate!

Want to classify these points correctly

Test data

 pointExample: future
emails to classify as spam/ham

Cross-Validation Remarks

- k-fold cross-validation is a randomized procedure
- Re-running CV results in different cross-validation scores!
- Suppose there are n training data points and k folds
- If we are trying 10 different hyperparameter settings, how many times do we do model fitting? 10k
- If this number is similar in size to n, CV can overfit!
- How many training data are used in each model fit during cross-validation? [(k-1)/k]n
- Smaller \# folds typically means faster training
- If $k=n$, would re-running cross-validation result in different cross-validation scores? What about $k=2$?
- For deterministic training procedure: same CV result for $k=n$ (since shuffling doesn't matter), different for $k=2$

Different Ways to Measure Accuracy

Simplest way:

- Raw error rate: fraction of predicted labels that are wrong (this was in our cross validation example earlier)

In "binary" classification (there are 2 labels such as spam/ham) when 1 label is considered "positive" and the other "negative":

Different Ways to Measure Accuracy

Simplest way:

- Raw error rate: fraction of predicted labels that are wrong (this was in our cross validation example earlier)

In "binary" classification (there are 2 labels such as spam/ham) when 1 label is considered "positive" and the other "negative":

Different Ways to Measure Accuracy

Simplest way:

- Raw error rate: fraction of predicted labels that are wrong (this was in our cross validation example earlier)

In "binary" classification (there are 2 labels such as spam/ham) when 1 label is considered "positive" and the other "negative":

Different Ways to Measure Accuracy

Simplest way:

- Raw error rate: fraction of predicted labels that are wrong (this was in our cross validation example earlier)

In "binary" classification (there are 2 labels such as spam/ham) when 1 label is considered "positive" and the other "negative":

Recall/True
Positive Rate: fraction of dotted line in true label +

Precision:
fraction of + in dotted line

- Raw error rate: fraction of predicted labels that are wrong (this was in our cross validation example earlier)

In "binary" classification (there are 2 labels such as spam/ham) when 1 label is considered "positive" and the other "negative":

> Recall/True Positive Rate: fraction of dotted line in true label + $=2 / 3$ Precision:
> fraction of + in dotted line

False Positive Rate:

 fraction of dotted linein true label -

$$
=3 / 7
$$

Prediction and Model Validation

Demo

Deep Learning

IM영NET

Over 10 million images, 1000 object classes

2011: Traditional computer vision achieves accuracy ~74\%
2012: Initial deep neural network approach accuracy ~84\%
2015 onwards: Deep learning achieves accuracy 96\%+
Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. IJCV 2015.

Deep Learning Takeover

Academia:

- Top computer vision conferences (CVPR, ICCV, ECCV) are now nearly all about deep learning
- Top machine learning conferences (ICML, NeurlPS) have heavily been taken over by deep learning

Heavily dominated by industry now!
Extremely useful in practice:

- Near human level image classification (including handwritten digit recognition)
- Near human level speech recognition

Google facebook. amazon

- Improvements in machine translation, text-to-speech
- Self-driving cars
- Better than humans at playing Go

DeepMind's StarCraft 2 Al is now better than 99.8 percent of all human players

AlphaStar is now grandmaster level in the real-time strategy game
By Nick Statt \| @nickstatt | Oct 30, 2019, 2:00pm EDT
f 约 share

Is it all hype?

Should you as a human be afraid of robots taking your job?!?

BUSINESS

$00000{ }^{\circ}$

American robots lose jobs to Asian robots as Adidas shifts manufacturing
By Reuters

November 11, 2019 | 9:13am | Updated

Source: Goodfellow, Shlens, and Szegedy. Explaining and Harnessing Adversarial Examples. ICLR 2015.

Source: Papernot et al. Practical Black-Box Attacks against Machine Leaming. Asia Conference on Computer and Communications Security 2017.

Fooling Neural Networks in the Physical World with 3D Adversarial Objects

31 Oct 2017-3 min read - shared on Hacker News, Lobsters, Reddit, Twitter

We've developed an approach to generate 3D adversarial objects that reliably fool neural networks in the real world, no matter how the objects are looked at.

Neural network based classifiers reach near-human performance in many tasks, and they're used in high risk, real world systems. Yet, these same neural networks are particularly vulnerable to adversarial examples, carefully perturbed inputs that cause

Source: https://www.cc.gatech.edu/news/611783/erasing-stop-signs-shapeshifter-shows-self-driving-cars-can-still-be-manipulated

Source: Gizmodo article "This Neural Network's Hilariously Bad Image Descriptions Are Still Advanced Al". September 16, 2015. (They're using the NeuralTalk image-to-caption software.)

семег	Generol	new oocs
	cow	0.992
	cattle	8. 983
	mammal	8. 979
	grass	8. 978
	livestock	${ }^{0.966}$
	farm	®. 964
	landscape	0.963
	pasture	0.954
	grassland	8. 949
	agriculture	0.948
	no person	0.945

general	MOREMODEIS \checkmark	General	view docs
		no person	0.991
		beach	0.990
		water	0.985
		sand	0.981
		sea	0.980
		travel	0.978
		seashore	0.972
		summer	0.954
		sky	0.946
		outdoors	0.944
		ocean	0.936

cow is not among top objects found!

General	VIEW DOCS
PREDICTED CONCEPT	PROBABILTY
group	0.979
adult	0.977
people	0.976
furniture	0.960
room	0.957
business	0.903
indoors	0.901
man	0.896
seat	0.895

elephant is not among top objects found!

Source: David Lopez-Paz

Another AI Winter?

~1970's: First Al winter over symbolic AI
~1980's: Second Al winter over "expert systems"

Every time: Lots of hype, explosion in funding, then bubble bursts

Photo credit: Peg Skorpinski

Artificial Intelligence-The Revolution Hasn't Happened Yet

Artificial Intelligence (AI) is the mantra of the current era. The phrase is intoned by technologists, academicians, journalists and venture capitalists
https://medium.com/@mijordan3/artificial-intelligence-the-revolution-hasnt-happened-yet-5e1d5812e1e7

What is deep learning?

Basic Idea

Object Recognition

Feature extractors
Classifier

Object Recognition

Learned

Feature extractors
Classifier

Neural Network

Learned

Neural Network

Learned

Deep Neural Network

Learned

Crumpled Paper Analogy

Analogy: Francois Chollet, photo: George Chen

Representation Learning

Each layer's output is another way we could represent the input data

Representation Learning

Each layer's output is another way we could represent the input data

Why Does Deep Learning Work?

Actually the ideas behind deep learning are old (~1980's)

- Big data

amazon.com
 NETFLIX fitbit G

- Better hardware

TPU's

- Better algorithms

Structure Present in Data Matters

Neural nets aren't doing black magic

- Image analysis: convolutional neural networks (convnets) neatly incorporates basic image processing structure
- Time series analysis: recurrent neural networks (RNNs) incorporates ability to remember and forget things over time
- Note: text is a time series
- Note: video is a time series

Handwritten Digit Recognition Example

Walkthrough of building a 1-layer and then a 2-layer neural net

Handwritten Digit Recognition

28×28 image

length 784 vector "dense" layer "dense"
(784 input neurons) with 10 numbers layer final output

Handwritten Digit Recognition

input

(1D numpy array with 784 entries)
length 784 vector (784 input neurons)
dense
(1D numpy array with 10 entries)

Handwritten Digit Recognition

```
\[
\begin{aligned}
\text { dense }[0] & =n p \cdot \operatorname{dot}(i n p u t, W[:, ~ 0])+b[0] \\
\text { dense [1] } & =\text { np.dot(input, } W[:, ~ 1])+b[1]
\end{aligned}
\]
```



```
weighted sums
(parameterized by a weight matrix \(W\) and a bias b)
```


with 10 numbers
dense
(1D numpy array with 10 entries)
r
$+b[j]$
(2D numpy array of dimensions 784-by-10) (1D humpy array with 10 entries)

```
"dense" layer
```

784 v
neut ne
input
34 entries)
า 784 vector input neurons)

Handwritten Digit Recognition

length 784 vector
(784 input neurons) with 10 numbers

Handwritten Digit Recognition

28×28 image

length 784 vector "dense" layer "dense"
(784 input neurons) with 10 numbers layer final output

Handwritten Digit Recognition

Handwritten Digit Recognition

Many different activation functions possible
Example: softmax turns the entries in the dense layer (prior to activation) into a probability distribution (using the "softmax" transformation)
dense_exp = np.exp(dense)
dense_exp /= np.sum(dense_exp)
dense_final = dense_exp

4	
3.5	
4	
-1	
0.5	softmax
2	
-4	0.17
(can be	

"dense" layer "dense"
with 10 numbers layer final
output

Handwritten Digit Recognition

28×28 image

length 784 vector
(784 input neurons) with 10 numbers

Handwritten Digit Recognition

Handwritten Digit Recognition

Demo part 1

Handwritten Digit Recognition

28×28 image

length 784 vector (784 input neurons)

dense layer with
10 neurons,
softmax activation, parameters W, b

Handwritten Digit Recognition

Training label: 6

28x28 image
Learning this neural net means learning W and b

Error is averaged
across training examples

Popular loss function for classification (> 2 classes): categorical cross entropy dense layer with 10 neurons, softmax activation, parameters W, b

Handwritten Digit Recognition

Demo part 2

Handwritten Digit Recognition

Training label: 6

28x28 image
Learning this neural net means learning W and b

Error is averaged
across training examples

Popular loss function for classification (> 2 classes): categorical cross entropy dense layer with 10 neurons, softmax activation, parameters W, b

Handwritten Digit Recognition

Training label: 6

28x28 image
length 784 vector (784 input neurons)

Learning this neural net means learning parameters of both dense layers!
 dense layer dense layer with with 51210 neurons, neurons, ReLU softmax activation activation

Handwritten Digit Recognition

Demo part 3

