
95-865 Unstructured Data Analytics

George Chen

Week 5: Intro to predictive data 
analytics, neural nets, and deep learning



Quiz 1

Mean: 33.3, std dev: 23.6, max achieved: 87



Quiz 1 Regrade Requests
• How regrades work:

1. Study solutions (already posted in Canvas under “Files”) 
very carefully

2. If you think there’s a mistake, send me an email and be 
very specific about what was incorrectly graded and how 
many points are at stake

3. We will regrade your whole quiz 1 (the version that you 
submitted to Canvas on the quiz day)

4. Your score can go up, go down, or stay the same, and 
the regraded result is final

• Due this Friday 11:59pm Pittsburgh time



Disclaimer: unfortunately “k” 
means many things



What if we have labels?



Example: MNIST handwritten digits have known labels



If the labels are known…



And we assume data generated by GMM…
If the labels are known…

What are the model parameters?



Flashback: Learning a GMM

Step 0: Pick k

Step 1: Pick guesses for cluster probabilities, means, and 
covariances

Step 2: Compute probability of each point belonging to each of the 
k clusters

Step 3: Update cluster probabilities, means, and covariances 
carefully accounting for probabilities of each point belonging to 
each of the clusters

Repeat until convergence: 

(often done using k-means)

Don’t need this top part if we know the labels!

We don’t need to repeat until convergence



And we assume data generated by GMM…
If the labels are known…

What are the model parameters?

k = # of colors

We can directly estimate 
cluster means, covariances



What should the label of 
this new point be?

Whichever cluster has 
higher probability!



(a procedure that given a new data 
point tells us what “class” it belongs to)

What should the label of 
this new point be?

Decision boundary

We just created a classifier

Whichever cluster has 
higher probability!

This classifier we’ve created assumes a 
generative model



You’ve seen a prediction model 
that is partly a generative model

Linear regression!



x

y Model parameters: slope m, intercept b

Feature vector 
(1D in this case)

Label  
(1D in this case)



x

y

For specific value of x, 
assume y drawn from 
Gaussian with mean 

mx+b, standard dev 𝜎

Model parameters: slope m, intercept b

Feature vector 
(1D in this case)

Label  
(1D in this case)

Note: Standard linear 
regression has no generative 

procedure for generating 
values of x though!



Predictive Data Analysis
Training data

(x1, y1), (x2, y2), …, (xn, yn)

Goal: Given new feature vector x, predict label y

A giant zoo of methods

• y is discrete (such as colors red and blue) 
➔ prediction method is called a classifier

• y is continuous (such as a real number) 
➔ prediction method is called a regressor

• Generative models (like what we just described)
• Discriminative methods (just care about learning 

prediction rule without assuming generative model)



Example of a Discriminative 
Method: k-NN Classification



Example: k-NN Classification

What should the label of 
this new point be?



Example: k-NN Classification

What should the label of 
this new point be?

1-NN classifier prediction



Example: k-NN Classification

What should the label of 
this new point be?

2-NN classifier prediction

Randomly 
break tie



Example: k-NN Classification

What should the label of 
this new point be?

3-NN classifier prediction

We just saw: k = 1, k = 2, k = 3

What happens if k = n?



How do we choose k?

What I’ll describe next can be used to select 
hyperparameter(s) for any prediction method

First: How do we assess how good a prediction method is?



Hyperparameters vs. Parameters

• We fit a model’s parameters to training data  
(terminology: we “learn” the parameters)

• We pick values of hyperparameters and they do not get fit 
to training data

• Example: Gaussian mixture model 
• Hyperparameter: number of clusters k 
• Parameters: cluster probabilities, means, covariances

• Example: k-NN classification 
• Hyperparameter: number of nearest neighbors k 
• Parameters: N/A
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Example: future 
emails to classify 

as spam/ham
Example: Each data point is an email 
and we know whether it is spam/ham



Predict on data 
in orange

Train method on data in gray

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Compute 
prediction error

50%

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Predicted labels

Simple data splitting 
(commonly called train/test split)

In this example: we did a 80%-20% split
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Compute 
prediction error

50%



Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

Training 
data 
point

1. Shuffle data and put them into “folds” (5 folds in this example)
2. For each fold (which consists of its own train/validation sets):  

(a) Train on fold’s training data, test on fold’s validation data  
(b) Compute prediction error

3. Compute average prediction error across the folds



k-fold Cross Validation
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1. Shuffle data and put them into “folds” (k=5 folds in this example)
2. For each fold (which consists of its own train/validation sets):  

(a) Train on fold’s training data, test on fold’s validation data  
(b) Compute prediction error

3. Compute average prediction error across the folds

not the same k as in k-means or k-NN classification



k-fold Cross Validation
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1. Shuffle data and put them into “folds” (k=5 folds in this example)
2. For each fold (which consists of its own train/validation sets):  

(a) Train on fold’s training data, test on fold’s validation data  
(b) Compute some sort of prediction score

3. Compute average prediction score across the folds

not the same k as in k-means or k-NN classification

“cross validation score”



Choosing k in k-NN Classification

For each k = 1, 2, 3, …, the maximum k you are willing to try:

Compute 5-fold cross validation score using k-NN classifier 
as prediction method

Use whichever k has the best cross validation score

Note: k-NN classifier has a single hyperparameter k



Automatic Hyperparameter Selection

For each hyperparameter setting 𝜃 you are willing to try:

Compute 5-fold cross validation score using your algorithm 
with hyperparameters 𝜃

Use whichever 𝜃 has the best cross validation score

Suppose the prediction algorithm you’re using has 
hyperparameters 𝜃

Why 5?

People have found using 10 folds or 5 folds to work well in 
practice but it’s just empirical — there’s no deep reason
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Example: future 
emails to classify 

as spam/ham
Example: Each data point is an email 
and we know whether it is spam/ham

Important: the errors from simple data 
splitting and cross-validation are 

estimates of the true error on test data!

Example: earlier, we got a cross validation 
score of 20% error

This is a guess for the error we will get on 
test data

This guess is not always accurate!



Cross-Validation Remarks
• k-fold cross-validation is a randomized procedure

• Suppose there are n training data points and k folds
• If we are trying 10 different hyperparameter settings,  

how many times do we do model fitting?

• How many training data are used in each model fit during 
cross-validation?

• Re-running CV results in different cross-validation scores!

• If k = n, would re-running cross-validation result in different 
cross-validation scores? What about k = 2?

• If this number is similar in size to n, CV can overfit!

• Smaller # folds typically means faster training

10k

[(k−1)/k]n

• For deterministic training procedure: same CV result for 
k = n (since shuffling doesn’t matter), different for k = 2



Different Ways to Measure Accuracy
Simplest way:
• Raw error rate: fraction of predicted labels that are wrong  

(this was in our cross validation example earlier)

In “binary” classification (there are 2 labels such as spam/ham) 
when 1 label is considered “positive” and the other “negative”:



Different Ways to Measure Accuracy
Simplest way:
• Raw error rate: fraction of predicted labels that are wrong  

(this was in our cross validation example earlier)

In “binary” classification (there are 2 labels such as spam/ham) 
when 1 label is considered “positive” and the other “negative”:



Different Ways to Measure Accuracy
Simplest way:
• Raw error rate: fraction of predicted labels that are wrong  

(this was in our cross validation example earlier)

In “binary” classification (there are 2 labels such as spam/ham) 
when 1 label is considered “positive” and the other “negative”:

True label: +True label: −



Different Ways to Measure Accuracy
Simplest way:
• Raw error rate: fraction of predicted labels that are wrong  

(this was in our cross validation example earlier)

In “binary” classification (there are 2 labels such as spam/ham) 
when 1 label is considered “positive” and the other “negative”:

True label: +True label: −
Outlined in 

dotted black:  
predicted label + 

 
(all other points 

predicted to be −)

Recall/True 
Positive Rate: 

fraction of 
dotted line in 
true label +

Precision: 
fraction of + in 

dotted line



Simplest way:
• Raw error rate: fraction of predicted labels that are wrong  

(this was in our cross validation example earlier)

In “binary” classification (there are 2 labels such as spam/ham) 
when 1 label is considered “positive” and the other “negative”:

True label: +True label: −
Outlined in 

dotted black:  
predicted label + 

 
(all other points 

predicted to be −)

Recall/True 
Positive Rate: 

fraction of 
dotted line in 
true label +

Precision: 
fraction of + in 

dotted line

F1 score:
2 ⨉ precision ⨉ recall

precision + recall

= 2/3

= 2/5

= 1/2

False Positive Rate: 
fraction of dotted line 

in true label −
= 3/7



Prediction and Model Validation

Demo



Deep Learning



Over 10 million images, 1000 object classes

Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. ĲCV 2015.

2011: Traditional computer vision achieves accuracy ~74%
2012: Initial deep neural network approach accuracy ~84%

2015 onwards: Deep learning achieves accuracy 96%+



Deep Learning Takeover

• Top computer vision conferences (CVPR, ICCV, ECCV) are 
now nearly all about deep learning

• Top machine learning conferences (ICML, NeurIPS) have 
heavily been taken over by deep learning

Academia:

Extremely useful in practice:
• Near human level image classification 

(including handwritten digit recognition)
• Near human level speech recognition
• Improvements in machine translation, text-to-speech
• Self-driving cars
• Better than humans at playing Go

Heavily dominated by industry now!



Google DeepMind’s AlphaGo vs Lee Sedol, 2016





Is it all hype?

Should you as a human be afraid of robots taking your job?!?





Source: Goodfellow, Shlens, and Szegedy. Explaining and Harnessing Adversarial Examples. 
ICLR 2015.

panda 
~58% confidence

adversarial 
noise

gibbon 
~99% confidence



Source: Papernot et al. Practical Black-Box Attacks against Machine Learning. Asia 
Conference on Computer and Communications Security 2017.



Source: labsix



Source: https://www.cc.gatech.edu/news/611783/erasing-stop-signs-shapeshifter-shows-self-
driving-cars-can-still-be-manipulated



Source: Gizmodo article “This Neural Network's Hilariously Bad Image Descriptions Are Still 
Advanced AI”. September 16, 2015. (They’re using the NeuralTalk image-to-caption software.)



Source: Pietro Perona



Source: Pietro Perona

cow is not among top objects found!



Source: David Lopez-Paz

elephant is not among top objects found!



Another AI Winter?
~1970’s: First AI winter over symbolic AI

~1980’s: Second AI winter over “expert systems”

Every time: Lots of hype, explosion in funding, then bubble bursts



https://medium.com/@mĳordan3/artificial-intelligence-the-revolution-hasnt-happened-
yet-5e1d5812e1e7



What is deep learning?



Serre, 2014Slide by Phillip Isola



Brain/Machine “clown fish”

Basic Idea

Slide by Phillip Isola



Edges

Texture

Colors

Segments

Parts
“clown fish”

Feature extractors Classifier

Object Recognition

Slide by Phillip Isola



“clown fish”

Edges

Feature extractors

Texture

Colors

Segments

Parts

Classifier

Learned

Object Recognition

Slide by Phillip Isola



“clown fish”

Learned

Neural Network

Slide by Phillip Isola



“clown fish”

Learned

Neural Network

Slide by Phillip Isola



“clown fish”

Learned

Deep Neural Network

Slide by Phillip Isola



Crumpled Paper Analogy

Analogy: Francois Chollet, photo: George Chen

binary classification: 2 crumpled 
sheets of paper corresponding to the 

different classes

deep learning: series (“layers”) of 
simple unfolding operations to try to 

disentangle the 2 sheets



Representation Learning

“clown fish”

Learned

Visualize 

(e.g., t-SNE)

Visualize

Visualize

Visualize

Visualize

Visualize

Visualize

Each layer’s output is another way we could represent the input data



Representation Learning

“clown fish”

Learned

Visualize 

(e.g., t-SNE)

Visualize

Each layer’s output is another way we could represent the input data

cla
ss

ifie
r



Why Does Deep Learning Work?
Actually the ideas behind deep learning are old (~1980’s)

• Big data

• Better hardware

GPU’s
TPU’s

CPU’s 
& Moore’s law

• Better algorithms



Structure Present in Data Matters

Neural nets aren’t doing black magic

• Image analysis: convolutional neural networks (convnets) 
neatly incorporates basic image processing structure

• Time series analysis: recurrent neural networks (RNNs) 
incorporates ability to remember and forget things over time

• Note: text is a time series

• Note: video is a time series



Handwritten Digit 
Recognition Example

Walkthrough of building a 1-layer and then a 2-layer neural net



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

“dense” layer 
with 10 numbers

“dense” 
layer final 

output

weighted sums activation

(can be 
thought of 
as post-

processing)

(parameterized 
by a weight 

matrix W and 
a bias b)

single “dense” layer with 10 neurons



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

“dense” layer 
with 10 numbers

weighted sums

(parameterized 
by a weight 

matrix W and 
a bias b)

input dense

W b

(1D numpy array with 784 entries) (1D numpy array with 10 entries)

(2D numpy array 
of dimensions 

784-by-10)
(1D numpy array 
with 10 entries)



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

“dense” layer 
with 10 numbers

weighted sums

(parameterized 
by a weight 

matrix W and 
a bias b)

input dense

W b

(1D numpy array with 784 entries) (1D numpy array with 10 entries)

(2D numpy array 
of dimensions 

784-by-10)
(1D numpy array 
with 10 entries)

…

dense[0] = np.dot(input, W[:, 0]) + b[0]
dense[1] = np.dot(input, W[:, 1]) + b[1]

dense[j] =
783�

i=0

input[i] W[i, j]�

+ b[j]



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

“dense” layer 
with 10 numbers

weighted sums

(parameterized 
by a weight 

matrix W and 
a bias b)



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

“dense” layer 
with 10 numbers

“dense” 
layer final 

output

weighted sums activation

(can be 
thought of 
as post-

processing)

(parameterized 
by a weight 

matrix W and 
a bias b)

single “dense” layer with 10 neurons



Handwritten Digit Recognition

“dense” 
layer final 

output

activation

(can be 
thought of 
as post-

processing)

“dense” layer 
with 10 numbers

Many different activation functions possible

Example: Rectified linear unit (ReLU) 
zeros out entries that are negative

4

3.5

4

-1

0.5

2

-4

3

-2

5

dense
dense_final

dense_final = np.maximum(0, dense)

4

3.5

4

0

0.5

2

0

3

0

5

ReLU



Handwritten Digit Recognition

“dense” 
layer final 

output

activation

(can be 
thought of 
as post-

processing)

“dense” layer 
with 10 numbers

Many different activation functions possible

Example: softmax turns the entries in the 
dense layer (prior to activation) into a 
probability distribution (using the “softmax” 
transformation)

dense_exp = np.exp(dense) 
dense_exp /= np.sum(dense_exp) 
dense_final = dense_exp

dense
dense_final

4

3.5

4

-1

0.5

2

-4

3

-2

5

0.17

0.10

0.17

0.00

0.01

0.02

0.00

0.06

0.00

0.46

softmax



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

“dense” layer 
with 10 numbers

“dense” 
layer final 

output

weighted sums softmax

(can be 
thought of 
as post-

processing)

(parameterized 
by a weight 

matrix W and 
a bias b)

single “dense” layer with 10 neurons

Pr(digit 0)
Pr(digit 1)
Pr(digit 2)

Pr(digit 9)

Pr(digit 3)
Pr(digit 4)
Pr(digit 5)
Pr(digit 6)
Pr(digit 7)
Pr(digit 8)



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

We want the output of the 
dense layer to encode 

probabilities for whether the 
input image is a 0, 1, 2, …, 9  

but as of now we aren’t 
providing any sort of 

information to enforce this

dense layer with 
10 neurons, 

softmax activation, 
parameters W, b



Handwritten Digit Recognition

Demo part 1



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

dense layer with 
10 neurons, 

softmax activation, 
parameters W, b



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

Training label: 6

Loss/“error” error
Popular loss function for 

classification (> 2 classes): 
categorical cross entropy

Error is 
averaged 

across training 
examples

Learning this 
neural net 

means learning 
W and b

1
Pr(digit 6)log

dense layer with 
10 neurons, 

softmax activation, 
parameters W, b



Handwritten Digit Recognition

Demo part 2



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

Training label: 6

Loss/“error” error
Popular loss function for 

classification (> 2 classes): 
categorical cross entropy

Error is 
averaged 

across training 
examples

Learning this 
neural net 

means learning 
W and b

1
Pr(digit 6)log

dense layer with 
10 neurons, 

softmax activation, 
parameters W, b



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image
dense layer with 

10 neurons, 
softmax activation

Training label: 6

Loss/“error” error
Popular loss function for 

classification (> 2 classes): 
categorical cross entropy

Error is 
averaged 

across training 
examples

dense layer 
with 512 

neurons, ReLU 
activation

1
Pr(digit 6)log

Learning this neural net 
means learning parameters 

of both dense layers!



Handwritten Digit Recognition

Demo part 3


