Carnegie Mellon Univer sity

Heinz

95-865 Unstructured Data Analytics

Week 5: Intro to predictive data
analytics, neural nets, and deep learning

George Chen



Quiz 1

Fall 2019 95-865 Quiz 1 Histogram
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Mean: 33.3, std dev; 23.6, max achieved: 87



Quiz 1 Regrade Requests

e How regrades work:

1. Study solutions (already posted in Canvas under “Files”)
very carefully

2. If you think there’s a mistake, send me an email and be
very specific about what was incorrectly graded and how
many points are at stake

3. We will regrade your whole quiz 1 (the version that you
submitted to Canvas on the quiz day)

4. Your score can go up, go down, or stay the same, and
the regraded result is final

e Due this Friday 11:59pm Pittsburgh time



Disclaimer: unfortunately “k”
means many things



What if we have labels?



80 -60 -40 -20 O 20 40 60 80

Example: MNIST handwritten digits have known labels



If the l[abels are known...



If the labels are known...
And we assume data generated by GMM...
What are the model parameters”



Flashback: Learning a GMM

Don’t need this top part if we know the labels!
| StepOnRick k

| Step 1: Pick ¢ guesses-for cluster probabilities; méans, and
| covariances (often done Teiag K-meansT”

Repeat until convergenee

- Step 2: pute probability of each point belongln a.gach of the \,4
4 KA SterS !

Step 3 Update cluster probabllltles means, and covariances
carefully accounting for probabilities of each point belonging to
each of the clusters

We don’t need to repeat until convergence



If the l[abels are known...

And we assume data generated by GMM...

What are the model parameters”? ° ®
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k = # of colors

O
We can directly estimate

cluster means, covariances



What should the label of
this new point be”

Whichever cluster has
higher probabillity!



We |ust created a classifier

(a procedure that given a new data

DECISIon boundary \ - it tells us what “class” it belongs to)

®
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® What should the label of

this new point be”

Whichever cluster has
higher probabllity!

This classifier we’ve created assumes a
generative model



You’ve seen a prediction model
that is partly a generative model

Linear regression!



y Model parameters: slope m, intercept b

Label
(1D In this case)

V X
® ® Feature vector

(1D in this case)



y Model parameters: slope m, intercept b

Label
(1D In this case)

A‘
. x
Feature vector

(1D in this case)

Note: Standard linear For specific value of x,
regression has no generative | assume y drawn from
procedure for generating Gaussian with mean

values of x though! mx+b, standard dev o



Predictive Data Analysis

Training data

(X1! y1)’ (XZ’ y2)5 " (Xn, yn)
Goal: Given new feature vector x, predict label y

e yis discrete (such as colors and blue)
=> prediction method is called a classifier

e yis continuous (such as a real number)
-> prediction method is called a regressor

A giant zoo of methods
* (Generative models (like what we just described)

* Discriminative methods (just care about learning
prediction rule without assuming generative model)



Example of a Discriminative
Method: k-NN Classification



Example: k-NN Classification
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Example: k-NN Classification

O ./. 1-NN classifier prediction

®
®

® What should the label of
® o

O this new point be?



Example: k-NN Classification

e o0 ®
Randomly
break tie ® ®

® o0 2-NN classifier prediction

¢ O
° What should the label of
O this new point be?



Example: k-NN Classification

® 3-NN classifier prediction

O
© O
° What should the label of
O O this new point be?
O Wejustsaw: k=1, k=2, k=3

What happens if k = n?



How do we choose k?

What I'll describe next can be used to select
nyperparameter(s) for any prediction method

First: How do we assess how good a prediction method is?



Hyperparameters vs. Parameters

e We fit a model’s parameters to training data
(terminology: we “learn” the parameters)

* \We pick values of hyperparameters and they do not get fit
to training data

e Example: Gaussian mixture model
e Hyperparameter: number of clusters k
e Parameters: cluster probabilities, means, covariances

e Example: k-NN classification

* Hyperparameter: number of nearest neighbors k
* Parameters: N/A



Training data

Training Training
data data

| int
Training point POl

data
point

Training
data

Training data Training
data point dalta
point point

= Training
franing W data | Training
data oint
P data

point point

Example: Each data point is an emall
and we know whether it is spam/ham

Want to classify
these points
correctly

Test data
lestdatal point

olellpli

Test data fest Qata
poINt

point

Test data
point

Example: future
emails to classify
as spam/ham



Predicted labels

Training Training Training Training Training
data data data data data
point olellgli olellpli olellpli olellgli

Training Training Training Training Training

data data data data data
olellpli olellgli olellpli olellpli olellgli
Train method on data in gray Predict on data
IN orange
Compute

prediction error

Simple data splitting 509%
(commonly called train/test split)

In this example: we did a 80%-20% split



Training Training Training Training Training
data data data data data
point olellgli point olellpli point

Training Training Training Training Training

data data data data data
olellpli point point point point
Train method on data in gray Predict on data
IN orange
Compute

prediction error

0% 50%



Training Training Training Training Training
data data data data data
point olellgli point olellpli point

Training Training Training Training Training

data data data data data
olellpli point point point point
Train method on data in gray Predict on data
IN orange
Compute

prediction error

50% 0% 50%



Training Training Training Training Training
data data data data data
point olellgli point olellpli point

Training Training Training Training Training

data data data data data
olellpli point point point point
Train method on data in gray Predict on data
IN orange
Compute

prediction error

0% 50% 0% 50%



Training Training Training Training Training
data data data data data
point olellgli point olellpli point

Training Training Training Training Training

data data data data data
olellpli point point point point
Train method on data in gray Predict on data
IN orange
Compute

prediction error

0% 0% 50% 0% 50%
Average error: (0+0+50+0+50)/5 = 20%



Training
data
point

Training
data
point

Training
data
olellgli

Training
data
point

Training
data
point

Training
data
point

Training
data
olellpli

Training
data
point

Training
data
point

Training
data
point

1. Shuffle data and put them into “folds” (5 folds in t

2. For each fold (which consists of its own train/valic

Nis example)

ation sets):

(@) Train on fold’s training data, test on fold’s validation data
(o) Compute prediction error

3. Compute average prediction error across the folds



Nnot the same k as In k-means or k-NN classification

k-fold Cross Validation

Training
data
point

Training
data
point

Training
data
olellgli

Training
data
point

Training
data
point

Training
data
point

Training
data
olellpli

Training
data
point

Training
data
point

Training
data
point

1. Shuffle data and put them into “folds” (k=5 folds in this example)

2. For each fold (which consists of its own train/validation sets):
(@) Train on fold’s training data, test on fold’s validation data
(o) Compute prediction error

3. Compute average prediction error across the folds



Nnot the same k as In k-means or k-NN classification

k-fold Cross Validation

Training
data
point

Training
data
point

Training
data
olellgli

Training
data
point

Training
data
point

Training
data
point

Training
data
olellpli

Training
data
point

Training
data
point

Training
data
point

1. Shuffle data and put them into “folds” (k=5 folds in this example)

2. For each fold (which consists of its own train/validation sets):
(@) Train on fold’s training data, test on fold’s validation data
(lb) Compute some sort of prediction score

3. Compute average prediction score across the folds
“cross validation score”



Choosing k in k-NN Classification

Note: k-NN classifier has a single hyperparameter k
Foreach k=1, 2, 3, ..., the maximum k you are willing to try:

Compute 5-fold cross validation score using k-NN classifier
as prediction method

Use whichever k has the best cross validation score



Automatic Hyperparameter Selection

Suppose the prediction algorithm you’re using has
hyperparameters 6
For each hyperparameter setting 8 you are willing to try:

Compute B-fold cross validation score using your algorithm
with hyperparameters 6

Use whichever 8 has the best cross validation score



Important: the errors from simple data
splitting and cross-validation are
estimates of the true error on test datal

Example: earlier, we got a cross validation
score of 20% error

This is a guess for the error we will get on
test data

This guess is not always accurate!

Want to classify
these points
correctly

Test data
lestdatal point

point

Test data Test Qata
poINt

olellgli

Test data

point

Example: future
emalils to classify
as spam/ham



Cross-Validation Remarks

e k-fold cross-validation is a randomized procedure

* Re-running CV results in different cross-validation scores!
e Suppose there are n training data points and k folds

e |f we are trying 10 different hyperparameter settings,
now many times do we do model fitting? 10k

e [f this number is similar in size to n, CV can overfit!

e How many training data are used in each model fit during
cross-validation? [(k—1)/k]n

e Smaller # folds typically means faster training

e |t k=n, would re-running cross-validation result in different
cross-validation scores? What about k = 27

e [or deterministic training procedure: same CV result for
kK = n (since shuffling doesn’t matter), different for k = 2



Different Ways to Measure Accuracy

Simplest way:

 Raw error rate: fraction of predicted labels that are wrong
(this was in our cross validation example earlier)

INn “binary” classification (there are 2 labels such as spam/ham)
when 1 label is considered “positive” and the other “negative”



Different Ways to Measure Accuracy

Simplest way:

e Raw error rate: fraction of predicted labels that are wrong
(this was in our cross validation example earlier)

In “binary” classification (there are 2 labels such as spam/ham)
when 1 label is considered “positive” and the other “negative™:




Different Ways to Measure Accuracy

Simplest way:

e Raw error rate: fraction of predicted labels that are wrong
(this was in our cross validation example earlier)

In “binary” classification (there are 2 labels such as spam/ham)
when 1 label is considered “positive” and the other “negative™:

True label; — True label; +




Different Ways to Measure Accuracy

Simplest way:

e Raw error rate: fraction of predicted labels that are wrong
(this was in our cross validation example earlier)

In “binary” classification (there are 2 labels such as spam/ham)
when 1 label is considered “positive” and the other “negative™:

True label; — True label: + | Recall/True

Positive Rate:
. fraction of

dotted line In

. true label +
Precision:
fraction of + In

dotted line

predicted label +

Outlined in
dotted black:

(all other points .
predicted to be —) . -




e Raw error rate: fraction of predicted labels that are wrong
(this was in our cross validation example earlier)

INn “binary” classification (there are 2 labels such as spam/ham)
when 1 label is considered “positive” and the other “negative”:

True label; — True label: + | Recall/True

Outlined in
dotted black:
predicted label +

Positive Rate:
. fraction of
dotted line In
- true label +
= 2/3
Precision:
. fraction of + In

(all other points . -
predicted to be —) . .
dotted line

False Positive Rate: e
fraction of dotted line 2 X precision X recall
in true label — F1 score:

= 3/7

=1/2

precision + recall



Prediction and Model Validation

Demo



Deep Learning



IM&AGENET

Over 10 million images, 1000 object classes

2011: Traditional computer vision achieves accuracy ~74%

2012: Initial deep neura
2015 onwards: Deep

network approach accuracy ~84%
earning achieves accuracy 96%+

Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. 1JCV 2015,



'---

. » Top computer vision conferences (CVPR, IGCV, ECCV) are

o m =

Deep Learning Takeover

now nearly all about deep learning

e [op machine learning conferences (ICML, NeurlPS) have
. heavily been taken over by deep learning

Heavily dominated by industry novv'

Extremely useful in practice: GGo g|e

Near human level image classification

(including handwritten digit recognition) facebook
Near human level speech recognition amazon
Improvements in machine translation, text-to-speech

Self-driving cars
Better than humans at playing Go



Google DeepMin
e _

d’s_ AlphaGo vs Lee Sedol, 2016 -~



THEVERGE  Tcch - SCIENCE - MORE

GANING \ TECH \ ARTIFICIALINTELLIGENCE \

DeepMind’s StarCraft2 Alis "~
now better than 99.8 percent
of all human players

AlphaStar is now grandmaster level in the real-time strategy game

By Nick Statt | @nickstatt | Oct 30, 2019, 2:00pm EDT

f 9 [ sHare




Is it all hype?

Should you as a human be afraid of robots taking your job?!?



NEW YORK POST

| BUSINESS.
000OOO®

Americanrobots lose jobs to Asian robots as
Adidas shifts manufacturing

By Reuters
November 11, 2019 | 9:13am | Updated
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panda adversarial gibbon
~58% confidence NoIse ~99% confidence

Source: Goodfellow, Shlens, and Szegedy. Explaining and Harnessing Adversarial Examples.
ICLR 2015.



Source: Papernot et al. Practical Black-Box Attacks against Machine Learning. Asia
Conference on Computer and Communications Security 2017,



Fooling Neural Networks in the Physical
World with 3D Adversarial Objects

31 Oct 2017 - 3 min read — shared on Hacker News, Lobsters, Reddit, Twitter

We've developed an approach to generate 3D adversarial objects that reliably fool neural
networks in the real world, no matter how the objects are looked at.
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Neural network based classifiers reach near-human performance in many tasks, and
they’re used in high risk, real world systems. Yet, these same neural networks are
particularly vulnerable to adversarial examples, carefully perturbed inputs that cause

Source: labsix
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Source: https://www.cc.gatech.edu/news/611783/erasing-stop-signs-shapeshifter-shows-self-
driving-cars-can-still-be-manipulated



Source: Gizmodo article “This Neural Network's Hilariously Bad Image Descriptions Are Still
Advanced Al". September 16, 2015. (They're using the NeuralTalk image-to-caption software.)



General

cow 8.992
cattle 9.983
mamma 1 8.979
grass 0.978
livestock 8.966
farm 0.964
landscape 9.963
pasture 0.954
grassland 9.949
agriculture 9.948
no person 8.945

Source: Pietro Perona



General

no person 8.991
beach 8.990
water 8.985
sand 0.981
sea 0.980
travel 9.978
seashore 0.972
summer 0.954
sky 0.946
outdoors 0.944
ocean 0.936

cow IS not among top objects found!

Source: Pietro Perona



General

group 8.979

adult 0.977

people 9.976

furniture 0.960

room 0.957

business 8.903

indoors 9.901

man 0.896

seat 0.895

elephant iIs not among top objects found!

Source: David Lopez-Paz



Another Al Winter?

~1970’s: First Al winter over symbolic Al

~1980’s: Second Al winter over “expert systems”

Every time: Lots of hype, explosion in funding, then bubble bursts



a5
About membership Bjedlum Sign in ‘ Get started

emm. Michael Jardan

" Michael I. Jordan is a Professor in the Department of Electrical Enginearing and Computer Sciences
' and tha Department of Statistics at UC Barkelay.

" Apr18 - 16 min read
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Photo credit: Pcg Skorpinski

Artificial Intelligence—The Revolution
Hasn't Happened Yet

Artificial Intelligence (AT) is the mantra of the current era. The phrase is

intoned by technologists, academicians, journalists and venture capitalists

https://medium.com/@mijordan3/artificial-intelligence-the-revolution-hasnt-happened-
yet-be1dd812e1er



What is deep learning?



Classification
units

PIT /AIT

V4 /PIT

Y
Vi/v2 ey
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Slide by Phillip Isola Serre, 2014



Basic ldea

Brain/Machine | — “clown fish”

Slide by Phillip Isola



Object Recognition

Edges
\ Segments \
Texture “clown fish’
Parts /
Colors /
Feature extractors Classifier

Slide by Phillip Isola



Object Recognition

L earned
Edges
\ Segments
Texture “clown fish’
Parts
Colors /
Feature extractors Classifier

Slide by Phillip Isola



Neural Network

L earned

“clown fish”

Slide by Phillip Isola



Neural Network

L earned

“clown fish”

Slide by Phillip Isola



Deep Neural Network

L earned

“clown fish”

Slide by Phillip Isola



Crumpled Paper Analogy

\\M

. Dbinary CIaSS|flcat|on. 2 crumpled
sheets of papereekresponding tosthe

different €lagsses =
m .

deep learning: series (flayers”) of
simple unfolding operations to try to
disentangle the 2 sheets

Analogy: Francois Chollet, photo: George Chen



Representation Learning

Each layer’s output is another way we could represent the input data

| earned

“clown fish”




Representation Learning

Each layer’s output is another way we could represent the input data

| earned

O

k2 “clown fish”
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Why Does Deep Learning Work?

Actually the ideas lbehind deep learning are old (~1980’s)
e Big data

amazon.com , £ lyﬂ
NETFLIX - fitbit & UPMC

IIIIIIIIIIIIIIIIIIII

e Better hardware

AMD 1

CPU’s
& Moore’s law

e Better algorithms



Structure Present in Data Matters

Neural nets aren’t doing black magic

* |mage analysis: convolutional neural networks (convnets)
neatly incorporates basic image processing structure

* Time series analysis: recurrent neural networks (RNNSs)
iIncorporates ability to rememlber and forget things over time

e Note: text Is a time series

e Note: video Is a time series



Handwritten Digit
Recognition Example

Walkthrough of building a 1-layer and then a 2-layer neural net



Handwritten Digit Recognition

atten &
treat as
D vector I weighted sums activation
> : > >
i | (parameterized (can be
! by a weight thought of
| i matrix W and as post-
28x28 Image a bias b) processing)
length 784 vector “dense” layer “dense”
(784 input neurons)  with 10 numbers layer final

output



Handwritten Digit Recognition

weighted sums
>

(parameterized (2D numpy array
Dy a weight of dimensions
matrix W and 784-by-10)
a bias (1D numpy array
W™ b with 10 entries)
length 784 vector “dense” layer

(784 input neurons)  with 10 numlbers

input dense
(1D numpy array with 784 entries) (1D numpy array with 10 entries)



Handwritten Digit Recognition

dense [0]
dense|[|l]

np.dot(input, W[:, O]) + b[O]
np.dot(input, W[:, 1]) + b[1]

/83

dense[j] = »  input[ilxW[i, j]

=0

welighted sums

(parameterized (2D numpy array + b[]]
by a weight of dimensions
matrix W and 784-by-10)
a bias (1D numpy array
W™ be with 10 entries)
1 784 vector “dense” layer

put neurons)  with 10 numbers

input dense
34 entries) (1D numpy array with 10 entries)



Handwritten Digit Recognition

weighted sums
>

(parameterized
by a weight
matrix W and
a bias b)

length 784 vector “dense” layer
(784 input neurons)  with 10 numbers



Handwritten Digit Recognition

atten &
treat as
D vector I weighted sums activation
> : > >
i | (parameterized (can be
! by a weight thought of
| i matrix W and as post-
28x28 Image a bias b) processing)
length 784 vector “dense” layer “dense”
(784 input neurons)  with 10 numbers layer final

output



Handwritten Digit Recognition

Many different activation functions possible 4 4
3.5 3.5
Example: Rectified linear unit (RelLU) 4 4
zeros out entries that are negative 1 0
0.5 Rel.U 0.5
>
2 2
(can be
-4 0
dense_final = np.maximum(®, dense)|, thought of .
as post-
2 processing) | °
) S
“dense” layer “dense”
with 10 numbers layer final
dense output

dense final



Handwritten Digit Recognition

Many different activation functions possible 4 0.17

3.5 0.10
Example: softmax turns the entries in the 4 0.17
dense layer (prior to activation) into a -1 0.00

orobability distribution (using the “softmax” o5 Softmax
transformation) >

2 0.02
y (can be 0.00
dense exp = np.exp(dense) 3 thought of 0.06
dense exp /= np.sum(dense_exp) S| &S post-
dense_final = dense_exp - processing) 0'46

“dense” layer “dense’

with 10 numbers layer final

dense output

dense final



Handwritten Digit Recognition

|
i
atten & i
treat as |
D vector I weighted sums softmax
> : > >
| (parameterized (can be
1 by aweight thought of
| 1 matrix W and as post-
28x28 Image a bias b) processing)
length 784 vector “dense” layer “dense”
(784 input neurons)  with 10 numbers layer final

output



Handwritten Digit Recognition

atten &
treat as
D vector

v

28x28 Image

dense layer with
10 neurons,
softmax activation,
parameters W, b

length 784 vector
(/84 input neurons)



Handwritten Digit Recognition

Demo part 1



Handwritten Digit Recognition

atten &
treat as
D vector

v

28x28 Image

dense layer with
10 neurons,
softmax activation,
parameters W, b

length 784 vector
(/84 input neurons)



Handwritten Digit Recognition

Training label: 6

flatten &
treat as

1D vector
>

v

> — | Loss/“error” | = error

28x28 Image

dense layer with 1

10 neurons, log Pr(digit 6)
softmax activation,
parameters W, b

length 784 vector
(784 input neurons)



Handwritten Digit Recognition

Demo part 2



Handwritten Digit Recognition

Training label: 6

flatten &
treat as

1D vector
>

v

> — | Loss/“error” | = error

28x28 Image

dense layer with 1

10 neurons, log Pr(digit 6)
softmax activation,
parameters W, b

length 784 vector
(784 input neurons)



Handwritten Digit Recognition

Training label: 6

R
l

28x28 Image

dense layer
length 784 vector with 512

(784 input neurons)
activation

v

— | Loss/“error”

dense layer with

— error

:

10 neurons, 109 Pr(digit 6)

neurons, RelLU softmax activation



Handwritten Digit Recognition

Demo part 3



